The Crystal Structure of Amminecopper(II) Tellurate(IV) Monohydrate $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} . \mathrm{H}_{2} \mathrm{O}$

By Göran B. Johansson and Oliver Lindqvist
Department of Inorganic Chemistry, Chalmers University of Technology and the University of Göteborg, PO Box, S-402 20 Göteborg 5, Sweden

(Received 23 December 1976; accepted 28 January 1977)

Abstract

Single crystals of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ have been prepared by hydrothermal synthesis. The space group is $C 2 / c$ with $a=12.988(4), b=7.333(1), c=10.022$ (3) $\AA, \beta=97.18(3)^{\circ}$. The structure parameters were refined to an R of 0.040 with 1283 independent reflexions. The structure contains pyramidal TeO_{3}^{2-} ions with $\mathrm{Te}-\mathrm{O}$ distances of $1.867-1.881 \AA$. The Cu^{11} coordination is square planar with three O atoms at $1.947-$ $1.958 \AA$, while the fourth corner is occupied by an ammonia molecule with $\mathrm{Cu}-\mathrm{N}=1.993 \AA$. The Te and Cu atoms share O atoms thus forming a layer structure. The water of crystallization is situated between the layers.

Introduction

Previous structure investigations of $\mathrm{Cu}^{1 \mathrm{II}}$ tellurates(IV) comprise $\mathrm{CuTeO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ (Zemann \& Zemann, 1962), CuTeO_{3} (Lindqvist, 1972) and $\mathrm{CuTe}_{2} \mathrm{O}_{5}$ (Hanke, Kupčik \& Lindqvist, 1973).
CuTeO_{3} and $\mathrm{CuTe}_{2} \mathrm{O}_{5}$ were both prepared from $\mathrm{CuO}-\mathrm{TeO}_{2}$ melts, and the crystals had complicated three-dimensional network structures. The strong covalent connexions result in irregular Te and Cu polyhedra. In the mineral teinite $\left(\mathrm{CuTeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$, on the other hand, the presence of water of crystallization permits a more regular arrangement of O around the metal atoms, i.e. threefold pyramidal for $\mathrm{Te}^{\mathrm{IV}}$ and square planar for $\mathrm{Cu}^{\mathrm{II}}$.

The $\mathrm{Cu}^{\text {II }}$ tellurate(IV) crystals used in this study were prepared by Dr Jacques Moret, Montpellier, by hydrothermal synthesis from CuO and TeO_{2} in NH_{3} (aq.). The crystals were suspected to contain both water and ammonia molecules.

Experimental

Unit-cell dimensions and space-group extinctions were investigated with a Weissenberg camera. Accurate cell dimensions (Table 1) were obtained from a Guiner powder film exposed with KCl as internal standard. The cell constants were refined by least squares based on $41 \sin ^{2} \theta$ values (POWDER; Lindqvist \& Wengelin, 1967).*

[^0]The crystal used for data collection was mounted along b (Fig. 1) on a two-circle Pailred diffractometer. Mo $K \alpha$ radiation, monochromated with a graphite crystal, was used. The reflexions were measured with the ω-scan technique and a scan speed of $2.5^{\circ} \mathrm{min}^{-1}$ over scan intervals in the range $3 \cdot 0-6 \cdot 0^{\circ}$, depending on μ and 2θ. The background was measured for 24 s at each end of the scan interval. The $h 0 l-h, 10, l$ reflexions

Table 1. Crystallographic data for $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$

$a 12.988(4) \AA$	Formula weight	274.2
$b 7.333(1)$	Density D_{x}	$3.87 \mathrm{~g} \mathrm{~cm}^{-3}$
$c 10.022(3)$	Space group	$C 2 / c$ or $C c$
$\beta 97.18()^{\circ}$	Absorption coefficient	$97.5 \mathrm{~cm}^{-1}$
$V 942.2 \AA^{3}$	$\mu($ Mo $K a)$	
$Z 8$	Crystal habit	Blue plates

Fig. 1. The crystal used in data collection.

Fig. 2. IR spectra of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (full curve) and $\mathrm{NH}_{4} \mathrm{Cl}$ (dotted curve).

Fig. 3. ESCA spectrum of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO} . \mathrm{H}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$.
with $2 \theta<70^{\circ}$ were registered, and 1283 intensities with $\sigma(I) / I<0.2$ were regarded as significant. Corrections for Lorentz and polarization effects were performed with the program $D A T A P 1$ (O. Lindgren, Göteborg).

At the commencement of the X-ray study, the structural roles of the water and ammonia molecules were not obvious. To confirm the X-ray investigation, spectroscopic and thermogravimetric measurements were also made. The IR spectrum (Fig. 2) was obtained with a Perkin-Elmer 337 spectrophotometer with KBr as internal standard. The chemical analysis was carried out with a Hewlett-Packard ESCA apparatus. The heights of the $\mathrm{O}(1 s)$ and $\mathrm{N}(1 s)$ peaks (Fig. 3) indicated a $\mathrm{N}: \mathrm{O}$ atomic ratio of $1: 4$.

Determination of the structure

The Te atoms were found to occupy the general position $8(f)$ from the Patterson function, and the other non-hydrogen atoms were located from successive electron density calculations. The Fourier summations were carried out with the program FFT (Ten Eyck, 1973). A preliminary least-squares refinement
gave an R of $0 \cdot 11$. It was, however, apparent that the reflexions suffered from absorption. After a correction had been performed (DATAP2; Coppens, Leiserowitz \& Rabinovich, 1965), R dropped to $0 \cdot 05$. No significant extinction effects were present.

The least-squares refinement was carried out with the block-diagonal approximation program $B L O C K$ (O. Lindgren, Göteborg). In the final cycles, the refinement was extended to include anisotropic temperature factors, and the resulting positional parameters are given in Table 2.* Scattering factors for Te were obtained from Cromer \& Waber (1965), while those given by Doyle \& Turner (1968) were used for Cu, O and N . The observations were weighted according to $w=$ $\left(20 \cdot 0+F_{o}+0.004 F_{o}^{2}\right)^{-1}$. Interatomic bond distances and angles (Tables 3 and 4) were calculated with the program DISTAN (A. Zalkin, Berkeley).

According to the ESCA results and the atomic positions obtained, the chemical formula might be either $\mathrm{NH}_{4} \mathrm{Cu}(\mathrm{OH}) \mathrm{TeO}_{3}$ or $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$.

> * See previous footnote.

Table 2. Positional parameters for $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
Standard deviations are given in parentheses.

	x	y	z
Te	$0.24441(4)$	$0.21261(7)$	$0.31340(5)$
Cu	$0.3332(1)$	$0.0941(1)$	$0.0302(1)$
N	$0.4396(7)$	$0.2660(13)$	$-0.0244(8)$
$\mathrm{O}(1)$	$0.3044(6)$	$0.2823(9)$	$0.1594(7)$
$\mathrm{O}(2)$	$0.3604(5)$	$-0.0872(9)$	$-0.1036(7)$
$\mathrm{O}(3)$	$0.2298(5)$	$-0.0636(9)$	$0.0977(7)$
$\mathrm{O}(4)$	$\frac{1}{2}$	$0.0454(20)$	$\frac{3}{4}$
$\mathrm{O}(5)$	$\frac{1}{2}$	$0.4740(20)$	$\frac{1}{4}$

Table 3. Coordination distances (\AA) and angles $\left({ }^{\circ}\right)$ around $\mathrm{Te}^{\mathrm{IV}}$ and $\mathrm{Cu}^{\mathrm{II}}$

$\mathrm{Te}-\mathrm{O}(2)$	1.870 (7)	$\mathrm{Cu}-\mathrm{O}(2)$	1.950 (8)
$\mathrm{Te}-\mathrm{O}(3)$	1.877 (7)	$\mathrm{Cu}-\mathrm{O}(3)$	1.958 (7)
$\mathrm{Te}-\mathrm{O}(1)$	1.885 (8)	$\mathrm{Cu}-\mathrm{O}(1)$	1.960 (9)
$\mathrm{Te}-\mathrm{O}\left(3^{\prime}\right)$	2.950 (7)	$\mathrm{Cu}-\mathrm{N}$	1.998 (7)
$\mathrm{Te}-\mathrm{O}\left(3^{\prime \prime}\right)$	3.082 (7)	$\mathrm{Cu}-\mathrm{O}\left(1^{\prime}\right)$	$2 \cdot 602$ (9)
$\mathrm{Te}-\mathrm{O}\left(1^{\prime}\right)$	$3 \cdot 236$ (9)	$\mathrm{Cu}-\mathrm{O}(4)$	$3 \cdot 066$ (6)
$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}(2)$	96.1 (4)	$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(1)$	86.1 (3)
$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}(3)$	94.7 (3)	$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(2)$	92.9 (3)
$\mathrm{O}(2)-\mathrm{Te}-\mathrm{O}(3)$	97.6 (3)	$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(3)$	175.3 (3)
$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}\left(1^{\prime}\right)$	$116 \cdot 1$ (3)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	178.0 (4)
$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}\left(3^{\prime}\right)$	$65 \cdot 3$ (3)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)$	89.5 (3)
$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}\left(3^{\prime \prime}\right)$	159.1 (3)	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(3)$	91.5 (3)
$\mathrm{O}\left(\mathrm{I}^{\prime}\right)-\mathrm{Te}-\mathrm{O}(2)$	68.8 (3)	$\mathrm{N}-\mathrm{Cu}-\mathrm{O}\left(1^{\prime}\right)$	90.9 (3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Te}-\mathrm{O}(3)$	$146 \cdot 9$ (3)	$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(4)$	87.5 (3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Te}-\mathrm{O}\left(3^{\prime}\right)$	52.9 (2)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}\left(1^{\prime}\right)$	$93 \cdot 8$ (3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Te}-\mathrm{O}\left(3^{\prime \prime}\right)$	62.7 (2)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(4)$	86.4 (4)
$\mathrm{O}(2)-\mathrm{Te}-\mathrm{O}\left(3^{\prime}\right)$	87.9 (3)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	84.4 (4)
$\mathrm{O}(2)-\mathrm{Te}-\mathrm{O}\left(3^{\prime \prime}\right)$	63.4 (3)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)$	91.1 (3)
$\mathrm{O}(3)-\mathrm{Te} \cdot \mathrm{O}\left(3^{\prime}\right)$	159.8 (2)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(4)$	178.4 (3)
$\mathrm{O}(3)-\mathrm{Te}-\mathrm{O}\left(3^{\prime}\right)$	84.3 (3)	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(4)$	95.4 (3)
$\mathrm{O}(3)-\mathrm{Ye}-\mathrm{O}\left(3^{\prime \prime}\right)$	115.4(1)	$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(4)$	$90 \cdot 5$ (3)

Table 4. Distances (\AA) and angles $\left({ }^{\circ}\right)$ for possible hydrogen bonding

The structure is built up from TeO_{3} pyramids bonded via O bridges to three Cu atoms. The $\mathrm{Cu}^{\mathrm{II}}$ coordination is square planar with three corners of the square occupied by O atoms from different TeO_{3} groups and the fourth by an ammonia molecule. This arrangement results in infinite sheets (Fig. 4) separated by water of crystallization (Fig. 5).

The Cu^{11} coordination distances are normal (Table 3). The $\mathrm{Cu}-\mathrm{O}$ distances are very close to those found in $\mathrm{CuTe}_{2} \mathrm{O}_{5}$ (Hanke, Kupčik \& Lindqvist, 1973) in which they range from 1.950 (3) to 1.969 (3) \AA. The $\mathrm{Cu}-\mathrm{N}$ distance of 1.997 (7) \AA falls well within the range $1.97-2.07 \AA$ observed in other ammine Cu^{11} complexes (Meyer, Singh, Hatfield \& Hodgson, 1972). The deviations from the planar configuration of $0.03 \AA$ in tetrahedral directions (Table 5) are significant. In addition to the four planar bonds, there are two longer $\mathrm{Cu}-\mathrm{O}$ interactions of 2.602 (7) and 3.066 (7) $\AA \mathrm{com}-$ pleting a distorted octahedron.

In the ideal case of $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}$ threefold coordination, the TeO_{3}^{2-} ion ought to possess a threefold axis through the inert $\mathrm{Te} 5 s$ electron pair and the centre of the Te atom. The bond distances and angles in $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)$ $\mathrm{TeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Table 3) correspond well to this geometry: three $\mathrm{Te}-\mathrm{O}$ distances not significantly different from the mean value of $1.880 \AA$, and angles slightly different from the mean value of $96 \cdot 15^{\circ}$. In $\mathrm{BaTeO}_{3} . \mathrm{H}_{2} \mathrm{O}$ (Nielsen, Hazell \& Rasmussen, 1971), which is evidently ionic, the corresponding bond distances are $1.847-$ 1.859 (6) \AA and the angles are $96 \cdot 5-102.7(3)^{\circ}$, with average values of $1.855 \AA$ and 99.32°. Neither $\mathrm{BaTeO} 3_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ nor $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ contain any significant 'backbonding', i.e. one to three weak bonds opposite to the pyramidal $\mathrm{Te}-\mathrm{O}$ bonds. This also supports the presence of TeO_{3}^{2-} ions in the two structures.

There are several $\mathrm{N} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{O}$ distances in $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} . \mathrm{H}_{2} \mathrm{O}$ which could be consistent with hydrogen bonding (Table 4). With respect to the angles around N , the $\mathrm{N}-\mathrm{O}(2), \mathrm{N}-\mathrm{O}(4)$ and $\mathrm{N}-\mathrm{O}(5)$ dis-

Fig. 4. A stereoscopic drawing of one $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3}$ layer ($O R T E P$, Johnson, 1965).

Fig. 5. The $\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{TeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ structure seen along the layers (ORTEP, Johnson, 1965).

Table 5. Deviations (4) from a least-squares plane through the Cu planar coordination

	$\Delta(\dot{\mathrm{A}})$		$\Delta(\dot{\mathrm{A}})$
Cu	0.000	$\mathrm{O}(2)$	0.029
N	-0.030	$\mathrm{O}(3)$	-0.030
$\mathrm{O}(1)$	0.031		

tances of $3.045,2 \cdot 963$ and $3 \cdot 156 \AA$ respectively, ought to correspond to $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Since the H atoms attached to the water molecules do not conform to the $C 2 / c$ structure, no definite conclusions can be drawn concerning the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (or $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$) hydrogen bonds. However, it is possible that the true space group is $C c$ with all but the water H atoms being in agreement with $C 2 / c$ symmetry. In this case, the water molecules could be hydrogen bonded according to $\mathrm{O}(1) \cdots \mathrm{H}-\mathrm{O}(5)-\mathrm{H} \cdots \mathrm{O}(1)$ and $\mathrm{O}(2) \cdots \mathrm{H}-$ $\mathrm{O}(4)-\mathrm{H} \cdots \mathrm{O}(2)$ (Table 4).

We thank Professor Georg Lundgren for his support of this work, Dr Susan Jagner for revising the English text, and Dr John Wood for helping us to interpret the ESCA spectrum. Financial aid has been provided by
the Swedish Natural Science Research Council (NFR: contract No. 2318).

References

Coppens, P., Leiserowtiz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104 109.

Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-399.
Handbook of Chemistry and Physics (1968). 49th ed. Cleveland, Ohio: The Chemical Rubber Co.
Hanke, K.. Kupčik, V. \& Lindqvist, O. (1973). Acta Cry'st. B29, 963-970.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Lindevist, O. (1972). Acta Chem. Scand. 26, 1423-1430.
Lindqvist, O. \& Wengelin, F. (1967). Ark. Kem. 28, 179191.

Meyer, M.. Singh, P., Hatfield, W. \& Hodgson, D. (1972). Acta Crıst. B28, 1607-1613.

Niflsen. B. R., Hazell, R. G. \& Rasmussen, S. E. (1971). Acta Chem. Scand. 25, 3037-3040.
Ten Еyck, L. (1973). Acta Cryst. A 29, 183-191.
Zemann, A. \& Zemann, J. (1962). Acta Cryst. 15, 698-702.

[^0]: * Lists of structure factors, anisotropic thermal parameters and Guinier powder data have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32482 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 INZ. England.

